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Abstract

A formulation to include the effects of wall proximity in a second-moment
closure model that utilizes a tensor representation for the redistribution terms
in the Reynolds stress equations is presented. The wall-proximity effects are
modeled through an elliptic relaxation process of the tensor expansion coef-
ficients that properly accounts for both correlation length and time scales as
the wall is approached. Direct numerical simulation data and Reynolds stress
solutions using a full differential approach are compared to the tensor repre-
sentation approach for the case of fully developed channel flow.

1. INTRODUCTION

The theoretical development of higher order closure models. such as Reynolds
stress models, have primarily been formulated based on high Reynolds number as-
sumptions. The influence of solid boundaries on these closure models has usually been
accounted for through either a wall function approach or a modification to the high
Revnolds number form of the pressure-related correlations and tensor dissipation rate
and predicated on the near-wall asymptotic hehavior of the various velocity second
moments (So et al. 1991, Hanjali¢ 1994).

A broader based attempt to account for the proximity of a solid boundary 1is
the elliptic relaxation approach introduced over a decade ago (Durbin 1991) and
further developed for second-moment closures (Durbin 1993a, Wizman et al. 1990:
Manceau and Hanjali¢ 2000. Manceau, Carlson and Gatski 2001). In its two-equa-
tion form the v2 — f model has been applied to a variety of flows (e.g.. Durbin 1993b.
1995: Pettersson Reif et al. 1999). The new approach outlined here introduces a ten-
sor representation for the combined effects of a near-wall velocity-pressure gradient
correlation and anisotropic dissipation rate that asymptotes to a high Revnolds num-
ber form away from solid boundaries through an elliptic equation for the polynomial
expansion coefficients. The development of a generalized methodology for determin-
ing the polynomial expansion coefficients of representations for the turbulent stress
anisotropies by (Gatski and Jongen 2000) is extended to an elliptic relaxation proce-
dure for these expansion coefficients.

Although the material presented here introduces tensor representations and a ten-
sor projection methodology into the elliptic relaxation formulation. this work can also
be viewed as an intermediate step between a fully explicit elliptic relaxation algebraic
Revnolds stress formulation and the full differential elliptic relaxation Reynolds stress
formulation.



The predictive capabilitics of the new model are assessed through comparisons
with direct numerical simulation channel flow data (Moser et al. 1999). These com-
parisons include both mean and turbulent flow quantities.

2. Theoretical Background and Development

In this section. a mathematical framework is developed for the Reynolds stress
transport equations and the corresponding elliptic relaxation equation when a tensor
representation of the redistribution terms is used in the formulation. The method-
ology introduces a set of elliptic relaxation equations for the polynomial expansion
coefficients of the chosen representation. The + — f model uses the redistributive
terms in the elliptic equations. while the = — 3, model uses the expansion coefficients
in the elliptic equations. Both models use the Reyvnolds stress transport equations.

2.1 Transport Equations

The transport of the Reyvnolds stresses Ti; (= =) is governed by the equation
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where U; is the mean velocity, o;; is the pressure redistribution term. £, 1s the tensor
dissipation rate. and Dg and Dy, are the turbulent transport and viscous diffusion.
respectively. In the development outlined here, it is best to have @;; given by
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so that the trace of the pressure redistribution term is zero. In the application of the
elliptic relaxation method. it is also necessary to account for the effect of the dissi-
pation rate anisotropy as the wall is approached. This accounting for the dissipation
rate anisotropy is accomplished (e.g., Manceau 2000) by a relaxation of the dissipa-
tion rate anisotropy to its wall value. which is assumed to be equal to the Reyvnolds
stress anisotropy. This assumption allows the Revnolds stress transport equation in
(1) to be written as
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with the Reynolds stress anisotropy b; and dissipation rate anisotropy d;; defined as
_ Ty 0 _ iy by
b= =5 dy= 3 3 (5)

The original scaling of the relaxation function fi; was solely through the turbulent
kinetic energy A': however, Manceau, (‘arlson and Gatski (2001) have recently shown



that an added dissipation rate factor, ¢. to the scaling (zI\ fi;) eliminates an unwanted
amplification effect inherent in the original scaling.

Equation (3) is closed when the model for the turbulent transport DLTJ is used. In
previous elliptic relaxation studies that used the Reynolds stress transport equations,
the viscous diffusion and turbulent transport terms were modeled as

S r 0 2\ 0 . T 0T :
D”v = vV ;. ’Di]» = —31—; (11,-114,'1“. + gpu;\) = E_[ (( ‘IO'—I{TCEI . (6)

with o = 1.0 and (', = 0.15. The composite time scale
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where (';,. = 6 determines the switch to the Kolmogorov time scale (1//5)1/2 so that
the turbulent time scale will not vanish as the solid houndary is approached. Away

-1

from the boundary, the composite time scale asymptotes to the inertial scale A'/c.
In the two-dimensional flow considered here, solutions were obtained for the 7y,

and 7, normal Reynolds stresses and the 71, shear stress. A transport equation for

the turbulent kinetic energy was obtained from one-half the trace of Eq. (3) and was

solved for in lieu of the third normal stress 73,
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where P = 1;,0U;/0xy. The modeled transport equation for the turbulent dissipation

rate ¢ needed for closure is given by
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where 0. = 1.3, Cop = 144, (p = 1.83, with
) L P
Cr = (1 +alf). ar = 0.09. (10)

Note that this form of the dissipation rate equation (Durbin 1991) has introduced the
composite time scale into both the production and destruction of dissipation terms.

2.2 Elliptic Relaxation Methodology: 7 — f Model

The rescaled elliptic relaxation equation is driven by the high Revnolds number
form of the pressure-strain rate correlation I and a contribution from the Reynolds
stress anisotropy 2:.b;; (away from the wall the dissipation rate is assumed to be
isotropic d;; = 0). This combination results in an elliptic relaxation equation for fi;
given by (cf. Mancean and Hanjali¢ 2000)

|
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where

o
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and the relaxation scales are defined as

» 1'3/2 o\ 1/4
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with ('), = 0.16 and Cr, = 80. Previous implementations of the elliptic relaxation
procedure (Manceau and Hanjalié¢ 2000) using the Speziale. Sarkar and Gatski (5SG)
pressure strain rate model (Speziale et al. 1991) used the full nonlinear form. The
linear form of the SSG model implemented here is given by
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with (7 = 1.8, € = 3.4, (, = 0.37, (5 = 1.25. and ("y = 0.4. Note that since the
linear form of the pressure-strain rate model is used here, the value for 'y differs
from that used previously (€', = 0.2, see Manceau and Hanjali¢ 2000) for the form
of the elliptic relaxation equation given in (11).

Boundary conditions are needed for the fi; and are determined, in the vicinity
of the wall, by the balance of the redistributjve term by the viscous diffusion of the
Reynolds stresses resulting in Table 1. Only the 22- and 12-components of f have
determinate solutions to the near-wall balance of the stress transport equations. For
the remaining components f,; = Ja3 = — [12/2 are used as boundary conditions to en-
sure that f,; is traceless (Manceau. Carlson and Gatski 2001). Symmetry conditions
were applied at the centerline.

In the current work. one of the goals is to develop a methodology for incorporating
a tensor representation for the relaxed redistribution function fi;- Once developed and
validated this same procedure can he used in conjunction with tensor representations
for the Revnolds stress anisotropies as well. Such a combination would then vield an
elliptic relaxation explicit algebraic stress model. The details of the representation
for the Reynolds stress anisotropy will not be addressed in the current work, but
deserves further work. As will be discussed in Sec. 2.3, such a representation would
be consistent with a linear pressure-strain rate model.

2.3 Representations and Elliptic Relaxation: 7 — 3, Model

Although the elliptic relaxation formulation has already been applied within a full
differential Reynolds stress model. a question arises about what role tensor represen-
tations can play within the framework of the elliptic relaxation procedure.



Table 1. Boundarv Conditions for the f;; Tensor

Component Wall (‘enterline
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o — ;fzz,w Symmetry
—201/27'221
Ja2 ——,—T-i Svimetry
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S - 3]‘22.1« Symmetry
—‘201.’2 T12
1. — 0
1 2 A
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The differential elliptic relaxation equation for fi; can be obtained from the inte-
gral expression (e.g. Manceau and Hanjalic, 2000)

1 ‘ , Fyi(x.x")
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Revnolds stress tensor

and Go(x.x') is approximated by the [ree-space Greens function Go(x.x') = (47r)™!

with r = ||x’ — x||. The 4;; contributions to both the dissipation rate and Reynolds
stress anisotropies cancel so that the only remaining contributions are the tensor
dissipation rate and Reynolds stress tensor. The tensor function fi; and F;; can be
represented by polynomial expansions of basis tensors just as the associated Reynolds

. - . . {m) R
stress anisotropy tensor b;; has been. For such a basis given by 177 (x) (m = 1..... N).
the following representations are assumed:

~1

N
fi(x) = ZﬁfI(X)TiF/()(X) U
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A tensor scalar product (denoted by [ : ]) between each basis tensor T,-(/-m)(x) and
the representations given in Eqgs. (17) and (18) can be formed, and this leads (using
maltrix notation for convenience) to

N
Y hi(x) [T“)(x):T"“)(x)] _ /
=1

&I*x’ [F*(x.x'):T(’”)(x)J Gla(x.x')
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Since the functional dependency of the indicated scalar product depends solely on x.

Eq. (19) can be rewritten as

A(x) = /Q X' (%, X' ) G (x. x'). (20)

The modeling of the scalar function Yn(%,%’) follows that established previously for
the elliptic relaxation approach. that is
.

6 x) = 5, X exp (= 1) (21)
where, in general. the 4, coefficients can have an associated length scale uniquely
defined by the form given in Eq. (13).

With this model. Eq. (20) can be rewritten as

xp(—r/L, N
3,(x) = / P, (xx) SR L) (22)
Q 4y
This equation leads directly to the differential counterpart
(1= £29%) 3,(x) = —L2,(x.x) = 3"(x). (23)

where 47(x) are the expansion coefficients from the tensor representation of a quasi-
homogeneous form of f. Since the dissipation rate is assumed to he isotropic, f is
composed of the quasi-homogeneous form of the pressure-strain rate correlation and
a contribution due to the Revnolds stress anisotropy. The resultant expression for
#M(x) is given by

. ] n m 1 , . .
; 1(x) [T{ (x):T" ’(x)} = m [(H’ (x)+ Zecb(x)) :T! )(x)]
[Hf(x):T<m)(x)] | X
= R (X) . m=1....N. (21)
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where the quasi-homogeneous form of the pressure-strain rate model " is given by
, o PN s 2
= -, (('; _9 4 T) b4 K(LS + K (bs +Sb— E[b:s11)

_K(y (bW - Wb).  (25)

Note that a comparison of Egs. (14) and (25) shows that the return-to-isotropy term
proportional to b has been modified. The factor =. now influences the entire term and
the contribution from the Reynolds stress anisotropy 2¢.b to the relaxation function
f is now included in this (slow) term contribution to .

One of the improvements in the current elliptic relaxation formulation is that
the scaled relaxation function f defined in Eq. (1) is O(1) in the log-layer region.
This scaling negates the adverse influence of the elliptic operator in the log-layer that
occurred in the original (Durbin 1993a) formulation. In order to retain this benign
effect in the tensor representation formulation used here. it is necessary to ensure that
the expansion coefficients 3, also have this neutral effect.

Previous representations for the Reyuolds stress anisotropy tensor have used hasis
tensors of the form S, SW — WS, and S§? — [S:S]I/3. In the log-laver. where the
velocity gradient has a y~' behavior, this choice of Dasis tensors would require that
the corresponding expansion coefficients 3. /3, and 33 have a y, y%, and y? behavior.
respectively, in that region to eunsure that £ behaves as O(1). Unfortunately. given
that behavior of the i3,. the amplification effect would now effect the 3, and the
sought-after (1) behavior for the f is lost. For the fully developed channel flows of
interest. this problem can be easily circumvented by using a normalized basis set of

the form

T — §=. T = W - WS, TW=87— % (26)
where 87 = S/{S?}"/2 and W~ = W /{S?}/%. This normalization now makes the
hehavior of both the expausion coefficients and basis tensors O(1) in the log-layer,
which then precludes any adverse effect of the elliptic operator in the relaxation
equation (23).

Boundary conditions for the 3, expansion coefficients are required. Consistent
with the boundary conditions for the tensor function f;;. the corresponding i3, bound-
ary conditions are listed in Table 2 as functions of 7;; (see Appendix A for details).

The equivalence of the elliptic relaxation of the expansion coefficients 3, given
by Eq. (23) with the elliptic relaxation of the function f;; given by Eq. (11) can be
readily shown with the current normalized hasis. The solution to Eq. (24) is easily

obtained as

1 _ .
(A 3 4) = ([T, [T (IT)
1 1 7
TR (\/5”‘{1”" 3(17:'22 — [y 3005 + Hfzﬂ) : (27)



Table 2. Boundary Conditions for 4,

I Wall Centerline

, —20v/20 Tizl (IT.: T}
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i ST ek
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i3
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If the tensor representation Eq. (17) is applied to ff; then the /3, solution from Eq.
(27) would yicld for the components of ffi

3y S 3 gk
~h h ) ) ! 2k I 2h : :
(. 1}2~ fii- ;2 .:;3) = (7% _"’é + (T? »“j;lz + (—)3 —:—;
! 1 .
= ._1\— (H:m» Hchw ”?-zr 17!33). (28)

A comparison of the right-hand side of Eq. (28) with the right-hand side of Eq. (11)
shows that the two are equivalent. (The reader should recall from the discussion
following the definition of IT* in Eq. (25) that the form of the slow term was slightly
modified from the definition given in Eq. (14). With this change taken into account.
the exact equivalence Eqs. (11) and (28) holds.)

3. Results and Discussion

All flow calculations were carried out on fully developed turbulent channel flows.
The equations that were solved were scaled in wall units with friction Reynolds
number Re, based on channel half-height and friction velocity at the wall. A one-
dimensional finite-difference algorithm described in Appendix B was used for all com-
putations.

As shown in Sec. 2.3, the representation methodology that has been developed
vields an elliptic relaxation formulation equivalent to the elliptic relaxation of the ten-
sor function fi;. While such tensor projection methods have been used in conjunction
with nonlinear algebraic equations, the application here also validates its use with
differential operators.

Figures 1 - 3 show the predictive accuracy and equivalence of both the 7;; —
fij and 7, — 3, approaches. The flow field is the fully developed channel flow at
Re, = 590 (Moser et al. 1999). The figures include both a linear and log scale in
the wall normal direction. As can be seen from Fig. 1 for the mean velocity, hoth
the distribution across the channel and the near-wall asymptotic behavior agree with

8



the direct numerical simulation (DNS) data. Excellent agreement with the DNS data
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Figure I. Mean velocity distribution across channel at Re; = 590: (a) log-linear scale:
(b) log-log scale.

across the channel is also shown for the shear stress profile (Fig. 2): however. the
asvmptotic approach to the wall is greater than the theoretical estimate of O(y?).
The discrepancy becomes apparent for values of y < 1. This result is in contrast
to the predictions for the turbulent kinetic energy shown in Fig. 3. In this case
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Figure 2. Turbulent shear stress distribution across channel at Re, = 590: (a) linear
scale: (b) log-log scale.

the near-wall asymptotic behavior is consistent with the DNS results but the overall
values are slightly lower across the channel than the DNS data. Overall, the predictive
results for the mean velocity. Revnolds shear stress and turbulent kinetic energy are
quite exceptional and show that the method can be calibrated to provide excellent
predictions of this flow field. In actuality, since the models are formally equivalent.
no changes are required in any of the calibration constants.

Since a full differential Revnolds stress model is used for the turbulent velocity
field. it is possible as well as insightful to further examine the component stress
predictions. Figures 4 and 5 show the 7, and 72 component stresses. Since the

9
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Figure 3. Turbulent kinetic energy distribution across channel at Re, = 590: (a)
linear scale: (b) log-log scale.

near-wall asymptotic behavior O(y?) is dominated by the 71, (and 733) components.
it is not surprising to see from Fig. 4b that the near-wall asymptotics closely match
the DNS results. The O(y*) behavior that characterizes the DNS results for the 7y,
component (see Fig. 5b) are very closely replicated by the predictions. Fig. 4a shows
that across the channel predicted results were lower than the DNS results for the 7,
component. For the 7, component. however, the predicted peak value was higher
than the DNS results. but the predicted values were lower over the remainder of the
channel, as seen in Fig. 5a.
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Figure 4. Reynolds normal stress component 7y distribution across channel at Re,
= 590: (a) linear scale; (b) log-log scale.

An interesting assessment of how well the elliptic relaxation formulation models
the redistribution terms across the channel can be obtained from Eq. (4). The
quantity ' fi; obtained from the explicit representation given in Eq. (18) and the
elliptically relaxed 3, from Eq. (23) are plotted in Fig. 6 along with the quantity
0i;—2:(d;;—b;;) obtained from the DNS data. As Fig. 6a shows. the s i f,, component
produces the corresponding DNS results very well in the near-wall region and in the

10
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Figure 5. Reynolds normal stress component 7 distribution across channel at Re-
= 590: (a) linear scale; (b) log-log scale.

outer laver region toward the centerline. Between these two regions, the peak value
of the computations greatly exceeds that of the DNS. The normal i fi; and e/ fa
components show an even poorer prediction of the DNS results. In these cases, only
the outer layer region is correctly predicted; whereas. over the rest of the chanuel the
qualitative and quantitative predictions are generally poor. While the results of this
a priori validation of the elliptically relaxed function A fi; are disappointing. it 1s
clear that the actual predictions of the fully modeled set of equations are generally
very good. Thus other modeled terms in the formulation are able to account for any
discrepancies in the prediction of the redistribution term.

As Fig. 6 shows, all components of the elliptically relaxed redistribution term
correctly reproduce the DNS data in the outer laver of the chanuel flow but differ
extensivelv from the DNS data wheu reproducing the inner layer. Since the elliptic
operator term (—L*V?) is responsible for the deviation of the /3, from their quasi-
homogeneous 3 forms, it is worthwhile to quantify the size of the region across the
channel that is affected by this term. Figure 7 shows the distribution of —L2V?3,
across the channel for the three expansion coefficients (n = 1.2.3) at three different
values of Re.. In the inner layer, the wall unit scaling basically collapses the results
for all values of Re,. with the exception of the 3; component where the results in the
near-wall region show some dependence on Re: this sensitivity to Re, is not found in
the other components as Figs. Th and 7c show. The effect of the elliptic operator falls
to zero at y (wall unit) values around 102. The overshoot in the outer layver shown in
all the figures is attributed to the asymptotic behavior of the energy dissipation rate
= in this region. Both V7?3, and ¢ decrease (L increases); however, the dissipation
rate = decreases faster (L increases faster) than the corresponding decrease in V*3,.
The variation with Re, in this region is not surprising since the wall unit scaling is
not the proper scaling for this region.

11
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Figure 6. Comparison of predicted redistribution term components with DNS data
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components 7,; — 3, results are K fi;, and DNS results are o;—=2:(di;—b;;).
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4. Summary

A methodology has been developed that introduces a polynomial representation
for the tensor redistribution function fii- Anelliptic relaxation equation. analogous to
the f;; relaxation equation is formulated for the polynomial expansion coefficients /3, .
The new prediction method is demonstrated on a fully developed channel flow problem
and gives similar results to the previous elliptic relaxation method for fiio A formal
equivalence is established between the elliptic relaxation of the tensor function f;; and
its tensor representation. Although the predictions of the mean velocity and turbulent
stresses are generally accurate over the channel. an « priort assessment shows that
the current formulation does not model the redistribution well. Such results are
enlightening but are not uncommon: the results reflect the fact that in modeled
closure schemes. a combination of modeled terms combine to vield predictions of
quantities such as the mean velocity and Reynolds stresses.

While the theoretical approach developed here does not result in a reduction
I computational cost. it does introduce a new methodology that is requisite for
developing elliptic relaxation explicit algebraic stress models. The next step in the
development of such models will be to introduce representations for the Revnolds
stress anisotropies and analyvze the effects of modeling the turbulent transport and
viscous diffusion terms consistent with the approximations made in the formulation
of algebraic stress models.
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Appendix A 3, Boundary Conditions

The expressions for the i3, boundary conditions are derived from the basis tensors

T,-(;l) used in the representation of f;;

fi= 3T 4 3,1

e e Jor = BT + HTS)

ITEDIEN A i; : (A1)
=! faz = T35

fiz=1 7‘1(;; )

Table 1 gives the corresponding boundary conditions for these f;; components. The
boundary condition for 3; is directly proportional to the fi, boundary condition and
is given by

: Fr2.w 57 —20\/51/27'12 .
‘31,11‘ = jﬁ = \/Efl‘z.u' = Q%5 a1 ()\2)
1 B S r»l/
12 w2 (1)

The coefficient 33 appears in all three expansions of the diagonal terms of f;;. If
fi; is traceless. a unique expression for 35 at the wall will be obtained. From the
representation for fss. i3, can be immediately written as

, fazae . 30027y, :
3w = ET —3f33.0 = =1 (A3)
s Swl
a3 w (1)

The representations for fi; and fyy can be used 1o obtain an equivalent expressions
for the 33 boundary condition

(2) W(2) .
fozae 10w — Friae o) (f2200 + f110) ) A
T 70 @ g ) = =3/ (A4)
220t 1lae Tll.u‘ 22w 733.:1'

Mo =

With 34, known, the representation for either fi, or fys can be used to obtain i1 00
From the f,, representation. the wall boundary condition on /4, is given by

: (3
(.f‘ZZ.H‘ - 22.“41'{,1(')

s“j2.u' =

(2)
TZ'Z.u
u SIS s 1(3 .
(.f2‘2.u‘ + '3.7‘:3:3.11*]22‘)14') . Jasa — 15027y
= ~ (Z) = .I22.ll‘ _+_ 5 = 2 4 (‘AS)
1550 & S



Appendix B Numerical Solution Methodology

A one-dimensional finite-difference code was used for all computations. All equa-
tions were normalized by the bulk viscosity and friction velocity (i.c.. wall units).
The differencing template was node-centered with clustering close to the wall using
an expounential stretching function. In terms of the scaling used for the channel flow
calculations, the 500 node grid had the first point at a height of 0.1 wall units. The
channel Reynolds number Re. determined the channel grid height. The A and ¢
equations were implicitly coupled as were the 7.; — fi; equations, and for the second
model, the 7;; — 3, equations. The variables [’ K. ¢ and 7, were solved in a time-
dependent mode. while the f;; or 4 equations were not (i.e.. At = 0.) All variables
were updated at each time step.

In this appendix, the terms with the superscript (n + 1) denote variables that
were implicitly solved for and the terms with the superscript (n) were variables used
explicitly at cach iteration. The Reynolds stress equations coupled implicitly with
either the f;; or 3, equations were solved first. with the momentum, turbulent kinetic
energy and dissipation rate equations solved second. An updated 71, was used in the
momentum equation. but the eddy viscosity in the turbulent transport terms of all
the equations was not updated until after the completion of each time step. Tvpically
solutions were re-started from previous turbulent flow calculations.

The symbol y, denotes the height of the first node from the wall and 2. denotes
the boundary condition value for . The discretized form of the governing equations
are as follows. For the 7 — f model:

) Z 2l [1%3") et ) plok)

iy
(n+1) ()
Tij _(n) (l 12 (l {(n+1)
A + dy + or ] dy T (B1)

2
() _ g 4 (n+1) __ 1 NN T §
jl_] L ([y.zfu - 5(72-——)[\'(71] (Hlj + -_(,blj) . (BH)

The boundary conditions were implicitly written for the | ., as

T(n-}-])]
(n+1) on 22, :
L) = 20— (B3)
w Swo Yy
(n+1)
-(n+1) NEE 41
i = W0—5 (B4)
u Swo Yy
(n41})
(n+1) Y T2 Iz“ B5
f]2 - _‘-‘O _(”)2 3 ( ')]
n ~ !/1
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For the 7 — 3; model:

N
_nt1) _ () p() | (n) o(n) )
o T+ At li[)i‘,' R (Z 3 Yu )

=1

(n+1) (n)

iy _(n) d Vy d (at1) .

TR = B

ros T\ T o g™ (B6)
2 [Hh T m ] ()

‘))(”+1) . L{n)z_d__“j(n+1) o ! (BT)
o (['I/Z‘. { o 3(”]]\'(“) [TU <Tm) ] ‘

Similarly. the boundary conditions were implicitly written for the 4, as
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gl 02— o (BS)
ur Sw yl
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R R b e (B9)
u g Y1
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LSS ) I AN 7 = + 4 14+ 2 (—[:"("H) (B13)
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*(7 - 'p(”) n n
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The boundary conditions were implicitly written for < as
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